Preparation and photocatalytic activity of novel visiblelight-driven photocatalyst Nd₂InNbO₇

KAI HAN, HONG-QI YE ^{*}, XIN-DE TANG, ZHI ZHAO, HUI LIU, YOU-FENG LI

College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China

A novel visible-light-driven photocatalyst Nd_2InNbO_7 was prepared by solid-state reaction. The optical band gap of Nd_2InNbO_7 was determined to be 2.68 eV. Under visible-light irradiation, the photocatalytic activity for water splitting H_2 evolution over Nd_2InNbO_7 was higher than that over $Nd_2Zr_2O_7$. The higher photocatalytic activity of Nd_2InNbO_7 was ascribed to its conduction band nature, and the higher level of lattice distortion.

(Received April 19, 2011; accepted June 9, 2011)

Keywords: Pyrochlores, Semiconductors, Photocatalysts, Visible light, Water splitting

1. Introduction

Photocatalytic water splitting has attracted much attention since Honda and Fujishima found that clean energy carrier, H₂, can be obtained from renewable water by solar irradiation [1]. Reasonable activities for splitting water into H₂ and O₂ stoichiometrically under UV-irradiation has been achieved during the past thirty vears [2-6]. However, photocatalysts responsive to visible-irradiation remain limited. It is, consequentially, desirable to develop new photocatalytic materials with high activity under visible irradiation. Some metal sulphides and (oxy)nitrides, such as RuS₂ [7], $(AgIn)_{x}Zn_{2(1-x)}S_{2}$ [8], TaON [9], Ta₃N₅ [10] and Y₂Ta₂O₅N₂ [11], have been developed as visible light sensitive photocatalysts. Whereas, there is a deadly shortcoming of these compounds, they are unstable under light irradiation caused by the photocorrosion. Recently, a new series of visibleirradiation driven photocatalysts Ln₂Zr₂O₇ (Ln=Nd and Sm) have been reported [12]. These compounds possess complex $A_2B_2O_7$ -type pyrochlore structure. а Pyrochlores are often written as $A_2B_2O(1)_6O(2)$ to highlight the two types of O anions present. The structure can be described as consisting of a rigid threedimensional network of corner sharing BO₆ octahedra with the $A_2O(2)$ atoms occupying interstitial sites to form a Cu₂O-type linear network. The $B_2O(1)_6$ and $A_2O(2)$ networks weakly interact through the A-O(1) interaction and vacancies in the $A_2O(2)$ network are common place.

Herein, we report a novel oxide photocatalyst Nd_2InNbO_7 with pyrochlore structure. We consider that the B sites in the $A_2^{3+}B_2^{4+}O_7$ compound are randomly occupied by In^{3+} and Nb^{5+} ions in a charge-balanced manner, which might lead to a slight modification of the band structure and crystal structure, and resulting in a change in electrical transmission and photophysical

properties. A comparison of the photocatalytic property of Nd_2InNbO_7 to that of $Nd_2Zr_2O_7$ is made under visible light. Differences are discussed from the view of relationship between structure and property.

2. Experiments

The well-crystallized Nd₂InNbO₇ powders were synthesized by the conventional solid-state method using high-purity grade chemicals In₂O₃, Nd₂O₃ and Nb₂O₅. Stoichiometric amounts of the precursors were mixed and pressed into small columns. The columns first were calcined in an aluminum crucible in air for 24 hours at 1573 K. The as-obtained column samples were reground and retreated for 48 hours at 1573 K. In the present experiment, pyrochlore Nd₂Zr₂O₇, which were reported to be effective photocatalysts for water splitting under visible-light irradiation. Here, it was selected references to qualitatively evaluate the photocatalytic activity of Nd₂InNbO₇. The powder of Nd₂Zr₂O₇ was synthesized referring to the solid-state reaction method reported [13]. The crystal structure of the powders was examined via X-ray diffraction(XRD) analysis using an X-ray diffractometer(Rigaku D/MAX-yA, Japan) by CuKa radiation. UV-Vis diffuse reflectance spectrum was measured using a UV-Vis spectrometer (TU-1901, Beijing-Purkinje, China).

Reaction for photocatalytic H_2 evolution was carried out as following: the powder catalyst (1.0g) was dispersed and suspended by a magnetic stirrer in an aqueous methanol solution (70 ml CH₃OH, 570 ml H_2O) in an outer irradiation Pyrex glass cell, which was connected to the airtight gas circulation system. The suspensions containing the samples were irradiated by a 250W Xe lamp with attached cut filters to control the wavelength of the incident light, and the amount of H_2 produced was measured by gas chromatography. For the measurements, platinum co-catalyst was loaded onto the particle surface of photocatalysts with the photodeposition method as reported [3].

3. Results and discussion

Crystal structures of Nd₂InNbO₇ and Nd₂Zr₂O₇ are confirmed by XRD analysis. As shown in Fig. 1, both the as-prepared Nd₂InNbO₇ and Nd₂Zr₂O₇ samples were single phase. Full-profile structure refinement of the collected powder diffraction data for Nd_2InNbO_7 was performed using the Rietveld program FULLPROF [14]. Both the position parameter of refined Nd₂InNbO₇ and that of Nd₂Zr₂O₇ were shown in Table 1, which indicated that Nd₂InNbO₇ and Nd₂Zr₂O₇ are crystallized in cubic system with space group Fd3m, and the lattice parameter is a=10.6027(3) and 10.648 Å, respectively. All of the reflection peaks could be successfully indexed based on the lattice parameter and the space group (see Fig. 1). The UV-Vis diffuse reflectance spectrum of Nd₂InNbO₇ is illustrated in Fig. 2. The optical band gap of Nd₂InNbO₇ is found to be 2.68 eV, the band gap energy of $Nd_2Zr_2O_7$ was evaluated [12] to be 2.53 eV by photoelectrochemical method.

Table 1. The crystal structural data of Nd_2InNbO_7 and $Nd_2Zr_2O_7$.

(a) Crystal structure					-0.071
		Crystal	Space	Space Lattice parameter (A	
		system	group		
Nd ₂ InNbO ₇		Cubic	Fd3m	10.6027(3) 10.648	
Nd ₂ Zr ₂ O ₇ ^a		Cubic	Fd3m		
(b)Atomic position					÷
	atom	v	v	7	Lattice
	In/Nh	0	0	0	distortion
Nd_2InNbO_7	Nd	0.5	0.5	0.5	0.0400(6)
	0(1)	0 3326(5)	0.125	0.125	
	0(2)	0.375	0.375	0.375	
Nd ₂ Zr ₂ O ₇ ^a	Zr	0	0	0	0.0423(5)
	Nd	0.5	0.5	0.5	
	O(1)	0.3349(4)	0.125	0.125	
	O(2)	0.375	0.375	0.375	
:	100	440	622	Nd2InNbO7	
	400	1	022		
111 31	33	1 511	444	800 662 840	
			h	Nd ₂ Zi	∑2 O 7
10 20	20			- <u>-</u>	

Fig. 1. X-Ray diffraction patterns of Nd₂InNbO₇ and Nd₂Zr₂O₇.

2 Theta / deg.

The H₂ evolution as a function of visible-light irradiation time is shown in Fig. 3. After 10 h of light illuminating, the total amount of evolved H_2 over Nd_2InNbO_7 is 4.1 µmol, which is higher than 2.6 µmol over Nd₂Zr₂O₇. Further more, for the Pt-loaded Nd_2InNbO_7 (0.1 wt %), the generated amount of H_2 reaches 45.5 µmol. Fig. 4 presents the H₂ evolution over Nd₂InNbO₇ and Pt-loaded Nd₂InNbO₇ under visiblelight irradiation. Within 10h of visible light irradiation, the average rate of H₂ evolution over Nd₂InNbO₇ is 0.41 μ mol/h. The respective average rate of H₂ evolution over 0.05 wt% and 0.2 wt% Pt-loaded Nd₂InNbO₇ increases to be 1.8 and 2.4 µmol/h, and the 0.1 wt% Pt-loaded sample possesses a highest average rate of H₂ evolution, 4.5 µmol/h. It is well-known that the Pt/semiconductor composite leads to the formation of a Schottky barrier. Thus, the photoinduced electrons in the conduction band of the semiconductor are believed to readily transfer to Pt, which facilitates the separation of the photogenerated electron-hole pair and resulting in an improved the photocatalytic activity.

Fig. 2. UV–Vis diffuse reflectance spectra of Nd₂InNbO₇.

Fig. 3. Photocatalytic activities of 0.1%Pt-Nd₂InNbO₇, Nd₂InNbO₇ and Nd₂Zr₂O₇.

Fig. 4. Photocatalytic activities of Pt/Nd₂InNbO₇.

Hence, 0.1 wt% Pt is loaded onto Nd_2InNbO_7 and $Nd_2Zr_2O_7$ particles, respectively. Their comparative results of H_2 evolution under visible-light are shown in Fig. 5. The reaction is repeated three times.

Fig. 5. Photocatalytic activities of 0.1% Pt-Nd₂InNbO₇ and 0.1% Pt-Nd₂Zr₂O₇.

Clearly, the amounts of evolved H_2 increase linearly with an increase of irradiation time in three runs. The photoactivities over Nd_2InNbO_7 and $Nd_2Zr_2O_7$ slightly decrease in the second run, but no further attenuation occurred in the third run. The XRD pattern of Nd_2InNbO_7 shows no difference before and after the photocatalytic H_2 evolution, indicating the Nd_2InNbO_7 compound is stable under the present working condition. The average rate of H_2 evolution in the third run is 4.2 and 0.56 µmol/h for 0.1 wt% Ptloaded Nd_2InNbO_7 and 0.1 wt% Pt-loaded $Nd_2Zr_2O_7$, respectively. No H_2 is detected when the light was turned off ('dark test') and the reaction cell is reevacuated. This result excludes the possibility of H_2 generation from the 'mechano-catalytic mechanism' [15].

It is generally believed that the band structures of photocatalyst play an important role in the photocatalytic activities. Prokofiev et al. [16] had studied periodicity in the optical band gap variation of rare earth sesquioxides. According to their results, the occupied 4f band in rare earth sesquioxides lay above the O2p level, and thus the 4f-d transition determined the band gaps. Consequently, the Nd4f orbital exist above the top of the O2p orbital and the valence band edge of $Nd_2Zr_2O_7$ become higher to decrease band gap energy (E_g) . The same consideration may be made for the Nd₂InNbO₇ compound. Recently, the electronic structures of InNbO₄ photocatalysts have been reported by Oshikiri et al. based on the first principles calculations [17]. The conduction bands of the InNbO₄ photocatalysts consist of a small In5s orbital component and a dominant Nb4d orbital component. The band structures of the Nd₂InNbO₇ and $Nd_2Zr_2O_7$ photocatalysts are suggested according to the above reports. Their valence band should consist of Nd4f and O2p orbitals, and their conduction band should consist of Nb4d and In5s for Nd₂InNbO₇ and Zr4d orbital for Nd₂Zr₂O₇, respectively. Fig. 6 shows suggested band structures of the Nd₂InNbO₇ and $Nd_2Zr_2O_7$ photocatalysts. Our simple assumption is that the narrower band gap of Nd₂InNbO₇ and its conduction band nature may result in a larger amount of light absorption and lower recombination rate of charge carrier, comparing to that of Nd₂Zr₂O₇.

It is also believed that the crystal structures of photocatalyst with similar band structure play a crucial role in the photocatalytic activities.

The distortion of BO_6 polyhedra in $A_2B_2O_7$ -type pyrochlore structures results in their lattice distortion which is one of the important parameters for charge separation and contributes to enhance the photocatalytic activity [18,19]. The correlation between photocatalytic activity and lattice distortion has been demonstrated in a series of pyrochlore-type structure metal oxide photocatalysts [20,21]. Information on the lattice distortion can be obtained from the O(1) parameter x in the pyrochlore-type $A_2B_2O_7$ structure. The lattice distortion is equal to 0.375 - the O(1) parameter x. For $Nd_2Zr_2O_7$, x=0.3349(4), the lattice distortion is evaluated to be 0.0400(6) while that for Nd₂InNbO₇ photocatalyst is evaluated to be 0.0423(5). Thus, the present results of the Pt-loaded Nd₂InNbO₇ showing high photocatalytic performance are in line with the correlation between activity and lattice distortion.

Fig. 6. Suggested band structures of Nd_2InNbO_7 and $Nd_2Zr_2O_7$.

4. Conclusions

Novel Nd₂InNbO₇ powder was synthesized via a solid-states reaction method. Photocatalytic activity for water splitting over Nd₂InNbO₇ was higher than that over Nd₂Zr₂O₇ under visible-light irradiation. The predominant photocatalytic activity that Nd₂InNbO₇ exhibiting was ascribed to its conduction band nature and heavier lattice distortion, generating by co-occupation of In³⁺ and Nb⁵⁺ in B site of pyrochlore-type A₂B₂O₇ compound.

This work was financially supported by the Research Fund for the Doctoral Program of Higher Education (200805330032).

References

- [1] A. Fujishima, K. Honda, Nature, 238, 37 (1972).
- [2] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki,
 - Y. Taga, Science, **293**, 269 (2001).
- [3] H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc., 125, 3082 (2003).
- [4] H. Kato, A. Kudo, Catal. Today, **78**, 561 (2003).
- [5] K. Sayama, A. Tanaka, K. Domen, K. Maruya, T. Onishi, J. Phys. Chem. B, **95**, 1345 (1991).
- [6] J. Sato, N. Saito, H. Nishiyama, Y. Inoue, J. Phys. Chem. B, 15, 6051 (2001).
- [7] K. Hara, K. Sayama, H. Arakawa, Applied Catalysis A: General, 189, 127 (1999).
- [8] I. Tsuji, H.Kato, H. Kobayashi, A. Kudo, J. Am. Chem. Soc, **126**, 13406 (2004).
- [9] M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, K. Domen, Catal. Today, 78, 555 (2003).
- [10] G. Hitoki, A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, K. Domen. Chem. Lett., 6, 736 (2002)
- [11] M. Liu, W. You, Z. Lei, G. Zhou, J. Yang, G. Wu, G. Ma, G. Luan, T. Takata, M. Hara, K. Domen, C. Li, Chem. Commun., 2192 (2004).
- [12] M. Uno, A. Kosuga, M. Okui, K. Horisaka, H. Muta, K. Kurosaki, S. Yamanaka, J. Alloys Compd., 420, 291 (2006).
- [13] H. Yamamura, H. Nishino, K. Kakinuma, J. Phys Chem Sols., 69, 1711 (2008).
- [14] J. Rodriguez-Carvajal, Fullprof 2k, Version 3.4 (Nov. 2005), Laboratoire Leon, Brillouin (CEA/CNRS), CEA-Saclay, 91191 Gifsur-Yvette Cedex, France.
- [15] K. Domen, J. N. Kondo, M. Hara, T. Takata, Bull. Chem. Soc. Jpn., 73, 1307 (2000).
- [16] A. V. Prokofiev, A. L. Shelykh, A. V. Golubkov, I. A. Smirnov, J. Alloys Comp., 219, 72 (1995).
- [17] M. Oshikiri, M. Boero, J. Ye, Z. Zou, G. Kido, J. Chem. Phys., **117**, 7313 (2002).
- [18] Z. Zou, J. Ye, H. Arakawa, J. Mater. Sci. Lett., 19, 1987 (2000).
- [19] Y. Inoue, M. Kohno, S. Ogura, Chem. Phys. Lett., 267, 72 (1997).
- [20] A. Kudo, H. Kato, S. Nakagawa, J. Phys. Chem. B, 104, 571 (2000).
- [21] J. Wang, Z. Zou, J. Ye, J. Phys Chem. Sols., 66, 349 (2005).

^{*}Correspoding author: csuhankai@gmail.com, hongqiye@gmail.com